

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS 4727

Further Pure Mathematics 3

Specimen Paper

Additional materials: Answer booklet Graph paper List of Formulae (MF 1)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your Name, Centre Number and Candidate Number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures, unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphic calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

1 Find the general solution of the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} - \frac{y}{x} = x \;,$$

giving y in terms of x in your answer.

[5]

2 The set $S = \{a, b, c, d\}$ under the binary operation * forms a group G of order 4 with the following operation table.

- (i) Find the order of each element of G. [3]
- (ii) Write down a proper subgroup of G. [1]
- (iii) Is the group G cyclic? Give a reason for your answer. [1]
- (iv) State suitable values for each of a, b, c and d in the case where the operation * is multiplication of complex numbers. [1]
- 3 The planes Π_1 and Π_2 have equations $\mathbf{r.(i-2j+2k)} = 1$ and $\mathbf{r.(2i+2j-k)} = 3$ respectively. Find
 - (i) the acute angle between Π_1 and Π_2 , correct to the nearest degree, [4]
 - (ii) the equation of the line of intersection of Π_1 and Π_2 , in the form $\mathbf{r} = \mathbf{a} + t\mathbf{b}$. [4]
- 4 In this question, give your answers exactly in polar form $re^{i\theta}$, where r > 0 and $-\pi < \theta \le \pi$.
 - (i) Express $4((\sqrt{3})-i)$ in polar form. [2]
 - (ii) Find the cube roots of $4((\sqrt{3})-i)$ in polar form. [4]
 - (iii) Sketch an Argand diagram showing the positions of the cube roots found in part (ii). Hence, or otherwise, prove that the sum of these cube roots is zero. [3]
- 5 The lines l_1 and l_2 have equations

$$\frac{x-5}{1} = \frac{y-1}{-1} = \frac{z-5}{-2}$$
 and $\frac{x-1}{-4} = \frac{y-11}{-14} = \frac{z-2}{2}$.

- (i) Find the exact value of the shortest distance between l_1 and l_2 . [5]
- (ii) Find an equation for the plane containing l_1 and parallel to l_2 in the form ax + by + cz = d. [4]

6 The set S consists of all non-singular 2×2 real matrices A such that AQ = QA, where

$$\mathbf{Q} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

- (i) Prove that each matrix **A** must be of the form $\begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$. [4]
- (ii) State clearly the restriction on the value of a such that $\begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$ is in S. [1]
- (iii) Prove that *S* is a group under the operation of matrix multiplication. (You may assume that matrix multiplication is associative.) [5]
- 7 (i) Prove that if $z = e^{i\theta}$, then $z^n + \frac{1}{z^n} = 2\cos n\theta$. [2]
 - (ii) Express $\cos^6 \theta$ in terms of cosines of multiples of θ , and hence find the exact value of

$$\int_0^{\frac{1}{3}\pi} \cos^6 \theta \, \mathrm{d}\theta \,. \tag{8}$$

8 (i) Find the value of the constant k such that $y = kx^2e^{-2x}$ is a particular integral of the differential equation

$$\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 4y = 2e^{-2x}.$$
 [4]

- (ii) Find the solution of this differential equation for which y = 1 and $\frac{dy}{dx} = 0$ when x = 0. [7]
- (iii) Use the differential equation to determine the value of $\frac{d^2y}{dx^2}$ when x = 0. Hence prove that $0 < y \le 1$ for $x \ge 0$.

_			,		
1	Integ	grating factor is $e^{\int -x^{-1} dx} = e^{-\ln x} = \frac{1}{x}$	M1		For finding integrating factor
		^	A1		For correct simplified form
	$\frac{\mathrm{d}}{\mathrm{d}x}$	$\left(\frac{y}{x}\right) = 1 \Rightarrow \frac{y}{x} = \int 1 dx \Rightarrow y = x^2 + cx$	M1		For using integrating factor correctly
			B1 A1	5	For arbitrary constant introduced correctly For correct answer in required form
				5	
2	(i)	b is the identity and so has order 1	B1		For identifying b as the identity element
		d*d=b, so d has order 2	B1 B1	2	For stating the order of <i>d</i> is 2 For both orders stated
		a*a=c*c=d, so a and c each have order 4	 -		
	(ii) 	{ <i>b</i> , <i>d</i> }	B1	1 	For stating this subgroup
	(iii)	G is cyclic because it has an element of order 4	B1	1	For correct answer with justification
	(iv)	b=1, d=-1, a=i, c=-i (or vice versa for a, c)	B1	1	For all four correct values
				6	
3	(i)	Normals are $\mathbf{i} - 2\mathbf{j} + 2\mathbf{k}$ and $2\mathbf{i} + 2\mathbf{j} - \mathbf{k}$	B1		For identifying both normal vectors
		Acute angle is $\cos^{-1} \left(\frac{ 2-4-2 }{3\times 3} \right) \approx 64^{\circ}$	M1		For using the scalar product of the normals
			M1 A1	4	For completely correct process for the angle For correct answer
		Direction of line is (i 2i 2k)\(\frac{1}{2}i \ k)	M1		
	(11)	Direction of line is $(\mathbf{i} - 2\mathbf{j} + 2\mathbf{k}) \times (2\mathbf{i} + 2\mathbf{j} - \mathbf{k})$, i.e. $-2\mathbf{i} + 5\mathbf{j} + 6\mathbf{k}$	A1		For using vector product of normals For correct vector for b
		$x-2y+2z=1, 2x+2y-z=3 \Rightarrow 3x+z=4,$			2 01 0011001 100102 101 2
		so a common point is $(1,1,1)$, for example	M1		For complete method to find a suitable a
		Hence line is $\mathbf{r} = \mathbf{i} + \mathbf{j} + \mathbf{k} + t(-2\mathbf{i} + 5\mathbf{j} + 6\mathbf{k})$	A1	4	For correct equation of line
					(Other methods are possible)
				8	
4	(i)	$4((\sqrt{3})-i)=8e^{-\frac{1}{6}\pi i}$	В1		For $r = 8$
			В1	2	For $\theta = -\frac{1}{6}\pi$
	(ii)	One cube root is $2e^{-\frac{1}{18}\pi i}$	B1√		For modulus and argument both correct
		Others are found be multiplying by $e^{\pm \frac{2}{3}\pi i}$	M1		For multiplication by either cube root of 1 (or equivalent use of symmetry)
		Giving $2e^{\frac{11}{18}\pi i}$ and $2e^{-\frac{13}{18}\pi i}$	A1	٠	For either one of these roots
			A1	4	For both correct
	(iii)	↑			
			B1√		For correct diagram from their (ii)
		The roots have equal modulus and args differing			
		by $\frac{2}{3}\pi$, so adding them geometrically makes a	M1		For geometrical interpretation of addition
		closed equilateral triangle; i.e. sum is zero	A1	3	For a correct proof (or via components, etc)

			1		
5	(i)	$(\mathbf{i} - \mathbf{j} - 2\mathbf{k}) \times (-4\mathbf{i} - 14\mathbf{j} + 2\mathbf{k}) = -30\mathbf{i} + 6\mathbf{j} - 18\mathbf{k}$	M1		For vector product of direction vectors
		So common perp is parallel to $5\mathbf{i} - \mathbf{j} + 3\mathbf{k}$	A1		For correct vector for common perp
		(5i + j + 5k) - (i + 11j + 2k) = 4i - 10j + 3k	B1		For calculating the difference of positions
		$d = \frac{\left (4\mathbf{i} - 10\mathbf{j} + 3\mathbf{k}) \cdot (5\mathbf{i} - \mathbf{j} + 3\mathbf{k}) \right }{\left 5\mathbf{i} - \mathbf{j} + 3\mathbf{k} \right } = \frac{39}{\sqrt{35}}$	M1		For calculation of the projection
		$ 5\mathbf{i} - \mathbf{j} + 3\mathbf{k} \qquad \sqrt{35}$			
			A1	5	For correct exact answer
	(ii)	Normal vector for plane is $5\mathbf{i} - \mathbf{j} + 3\mathbf{k}$	B1√		For stating or using the normal vector
		Point on plane is $5i + j + 5k$	B1		For using any point of l_1
		Equation is $5x - y + 3z = 25 - 1 + 15$	M1		For using relevant direction and point
		i.e. $5x - y + 3z = 39$	A1	4	For a correct equation
				9	
6	(i)	$\mathbf{AQ} = \mathbf{QA} \Rightarrow \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$	M1		For considering $\mathbf{AQ} = \mathbf{QA}$ with general \mathbf{A}
		i.e. $\begin{pmatrix} a & a+b \\ c & c+d \end{pmatrix} = \begin{pmatrix} a+c & b+d \\ c & d \end{pmatrix}$	A1		For correct simplified equation
		Hence $a = a + c$ and $a + b = b + d$	M1		For equating corresponding entries
		i.e. $c = 0$ and $d = a$	A1		For complete proof
	(ii)	To be non-singular, $a \neq 0$	B1	1	For stating that <i>a</i> is non-zero
	(iii)	Identity is $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ as usual, since this is in S	B1		For justifying the identity correctly
		Inverse of $\begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$ is $\begin{pmatrix} 1/a & -b/a^2 \\ 0 & 1/a \end{pmatrix}$, as $a \neq 0$	B1		For statement of correct inverse
			B1		For justification via non-zero a
		$ \begin{pmatrix} a_1 & b_1 \\ 0 & a_1 \end{pmatrix} \begin{pmatrix} a_2 & b_2 \\ 0 & a_2 \end{pmatrix} = \begin{pmatrix} a_1 a_2 & a_1 b_2 + b_1 a_2 \\ 0 & a_1 a_2 \end{pmatrix} $	M1		For considering a general product
		This is in S, since $a_1a_2 \neq 0$, so all necessary group	A 1	_	Formulation
		properties are shown	A1	5	For complete proof
				10	
7	(i)	$z^n = \cos n\theta + i\sin n\theta$	B1		For applying de Moivre's theorem
		$z^{-n} = \cos n\theta - i\sin n\theta$, hence $z^{n} + z^{-n} = 2\cos n\theta$	B1	2	
	 (ii)	$2^{6}\cos^{6}\theta = (z+z^{-1})^{6}$	M1		For considering $(z+z^{-1})^6$
	(11)	$= (z^{6} + z^{-6}) + 6(z^{4} + z^{-4}) + 15(z^{2} + z^{-2}) + 20$	M1		6 ()
		$= (z + z) + 6(z + z) + 13(z + z) + 20$ $= 2\cos 6\theta + 12\cos 4\theta + 30\cos 2\theta + 20$			For expanding and grouping terms
			A1		For correct substitution of multiple angles
		Hence $\cos^6 \theta = \frac{1}{32} (\cos 6\theta + 6\cos 4\theta + 15\cos 2\theta + 10)$			For correct answer
		Integral is $\frac{1}{32} \left[\frac{1}{6} \sin 6\theta + \frac{3}{2} \sin 4\theta + \frac{15}{2} \sin 2\theta + 10\theta \right]_0^{\frac{1}{3}\pi}$	M1		For integrating multiple angle expression
			A1√		For correct terms
		$= \frac{1}{32} \left(\frac{1}{6} \times 0 + \frac{3}{2} \times (-\frac{1}{2} \sqrt{3}) + \frac{15}{2} \times (\frac{1}{2} \sqrt{3}) + 10 \times \frac{1}{3} \pi \right)$	M1		For use of limits
		$= \frac{1}{32} \left(3\sqrt{3} + \frac{10}{3}\pi \right)$	A1	8	For correct answer
				10	

4727 Specimen Paper [Turn over

8	(i)	$y = kx^2 e^{-2x} \Rightarrow y' = 2kx e^{-2x} - 2kx^2 e^{-2x}$ and	M1		For differentiation at least once
	()	$y'' = 2ke^{-2x} - 8kxe^{-2x} + 4kx^2e^{-2x}$	A1		For both y' and y" correct
		$(2k - 8kx + 4kx^2 + 8kx - 8kx^2 + 4kx^2)e^{-2x} \equiv 2e^{-2x}$	M1		For substituting completely in D.E.
		Hence $k = 1$	A1	4	For correct value of k
	(ii)	Auxiliary equation is $m^2 + 4m + 4 = 0 \Rightarrow m = -2$	В1		For correct repeated root
		Hence C.F. is $(A+Bx)e^{-2x}$	B1		For correct form of C.F.
		G.S. is $y = (A + Bx)e^{-2x} + x^2 e^{-2x}$	B1√		For sum of C.F. and P.I.
		$x = 0, y = 1 \Rightarrow 1 = A$	M1		For using given values of x and y in G.S.
		$y' = Be^{-2x} - 2(A + Bx)e^{-2x} + 2xe^{-2x} - 2x^2e^{-2x}$	M1		For differentiating the G.S.
		$x = 0, y' = 0 \Rightarrow 0 = B - 2A \Rightarrow B = 2$	M1		For using given values of x and y' in G.S.
		Hence solution is $y = (1+x)^2 e^{-2x}$	A1	7	For correct answer
	(iii)	$\frac{d^2y}{dx^2} = 2 - 4 = -2$ when $x = 0$	B1		For correct value -2
		Hence (0,1) is a maximum point	B1		For statement of maximum at $x = 0$
		$\frac{dy}{dx} = 2(1+x)e^{-2x} - 2(1+x)^2 e^{-2x} = -2x(1+x)e^{-2x},$			
		so there are no turning points for $x > 0$	M1		For investigation of turning points, or equiv
		Hence $0 < y \le 1$, since $y \to 0$ as $x \to \infty$	A1	4	For complete proof of given result
				15	